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Abstract 

The use of machine learning has recently attracted the pharmaceutical industry and academia because it 
is able to reliably predict the cocrystal formation outcomes of API-coformer combinations and thus lead 
to an efficient cocrystal screening approach.  In this study, binary logistic regression and random forest 
models were developed with the intention of comparing their performance against predicting the 
cocrystal outcomes of a dataset of API-coformer combinations using a variety of inherent molecular 
features, and identifying which of these features tend to influence cocrystal formation more than others.  
The feature importance data of both models revealed that the most basic acceptor site on an API (basic 
pKa1) seemed to be one of the most important features that can reliably predict the formation of cocrystals.  
It was also found that the random forest model showed superior performance over the binary logistic 
regression model in its predictive accuracy (0.901 vs 0.811 respectively) based on the ROC plots and 
confusion matrices.  The cocrystal prediction power of these and other models will be further investigated 
by expanding the number and types of molecular properties and the size of the dataset. 
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Introduction 

The pharmaceutical industry and academia have seen many advances in the solid-state chemistry of oral 
dosage forms of active pharmaceutical ingredients (APIs), particularly in their physicochemical properties 
(e.g. aqueous solubility, dissolution rate, thermal stability, etc.) (Aakeröy et al., 2009; Aakeröy et al., 2014; 
Almeida e Sousa et al., 2016; Hickey et al., 2007; Laitinen et al., 2013; Sopyan et al., 2017).  Such 
improvements prove vital because BCS Class II APIs are frequently hampered by poor aqueous solubility 
and limited bioavailability, which typically pose a significant challenge to the overall performance of the 
formulated drug product.  Several solid forms have been formulated to overcome this barrier, such as salts, 
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solvates/hydrates, polymorphs, amorphous solid dispersions, and cocrystals, Figure 1 (Kavanagh et al., 
2019). 
  

 

Figure 1.  Possible solid forms that can be prepared from an API. (Kavanagh et 

al., 2019) 

 
 

While the other solid forms have enhanced the physicochemical characteristics of APIs, cocrystals have 
attracted the attention of solid-state chemists in the field of crystal engineering because the improved 
properties do not compromise the structural integrity of APIs at the molecular level and no covalent 
modification is conducted on them.  A cocrystal may exist as either a molecular cocrystal (MCC) or ionic 
cocrystal (ICC) (Aakeröy & Sinha, 2018; Kavanagh et al., 2019).  An MCC is generally defined as a crystalline 
material composed of two or more molecular components (often involving a combination of APIs and 
coformers) in stoichiometric amounts stabilized by intermolecular interactions, notably halogen bonds and 
hydrogen bonds.  On the other hand, an ICC is based upon a combination of neutral organic molecules and 
salts in a stoichiometric ratio.    

It is well documented in the literature that hydrogen bonds are strong and directional non-covalent 
interactions that can be reliably deployed to form MCCs in a predictable manner (Aakeröy et al., 2001, 
2002; Aakeröy, Desper, Elisabeth, et al., 2005; Aakeröy et al., 2004; Aakeröy, Desper, Leonard, et al., 2005; 
Aakeröy, Desper, & Urbina, 2005; Aakeröy et al., 2007).  Based on these studies, a library of supramolecular 
synthons consisting of complementary hydrogen bond donor and acceptor moieties is now available to the 
solid-state chemist to perform non-covalent synthesis, Figure 2.    
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Figure 2.  Examples of common supramolecular synthons used in 
crystal engineering (A) carboxylic acid dimer (B) amide dimer (C) 
carboxylic acid—amide (D) carboxylic acid—N-heterocycle, and (E) 
amide—N-heterocycle.  

 

It is now possible to form MCCs through a hierarchical interplay of intermolecular interactions using the 
Etter rules whereby the best donor will hydrogen bond with the best hydrogen bond acceptor, the second 
best donor will hydrogen bond with the second best acceptor, and so forth, until all donor and acceptors are 
satisfied (Etter, 1991).  Also, when the ∆pKa between the two hydrogen bond moieties of the components is 
less than 0, proton transfer is less likely to occur and a cocrystal results (Cruz-Cabeza, 2012; Enkelmann et 
al., 2021; Qiao et al., 2011).  These design concepts are therefore often integrated into experimental cocrystal 
screening, mostly involving combinatorial chemistry, mechanochemistry (Aakeröy et al., 2011; Delori et al., 
2012; Tan et al., 2016), and crystallization techniques (Malamatari et al., 2017). 

Even though these experimental methods have been used in the pharmaceutical industry to screen for 
cocrystals, they are largely based on a trial and error approach, produce unnecessary chemical waste, 
require more work and time, and are more expensive.  This means that a more efficient and greener 
cocrystal screening process is needed.  To this end, in silico screening strategies have been implemented to 
predict structural outcomes prior to experimentation.  Examples include the use of the Cambridge 
Crystallographic Structural Database (CCSD) for hydrogen bond propensity, conductor-like screening 
model for real solvents (COSMO-RS), molecular electrostatic potential surfaces (MEPS), lattice energy 
calculations, Hirshfeld surface analysis, the Hansen solubility parameter (HSP), Gibbs free energy, 
cocrystallization propensity, and solubility advantage (Cysewski, 2017; Khalaji et al., 2021; Kumar & Nanda, 
2021).    

More recently, machine learning algorithms have been developed to perform virtual cocrystal screening, 
such as logistic regression, artificial neural networks based on CCSD data mining, a high throughput 
cocrystal screening model, and network science and link prediction algorithms using molecular descriptors 
(Devogelaer et al., 2020; Mswahili et al., 2021; Wang et al., 2020; Zheng et al., 2020), and these studies 
have subsequently led to increased cocrystal prediction power.  In particular, a recent cocrystal prediction 
study revealed that a random forest model out-performed several other machine learning models, including 
logistic regression, AdaBoost, GradientBoosting, Multinomial Naїve Bayes, and Deep Neural Network, 
based on receiver operating characteristic (ROC) area under the curve (AUC) values, and was thus validated 
through the experimental screening of captopril cocrystals (Wang et al., 2020).  The dataset used in that 
study was comprised of 2D structural information based on molecular descriptors extracted from the CCSD.  
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Herein, the novelty in our current machine learning approach is that it samples a training dataset that is 
founded on an array of molecular properties that cannot be extracted through the molecular descriptors 
afforded by RDKit.  Although molecular descriptors provide a wealth of structural information about 
successful cocrystals (Wicker, 2017), we hypothesize that there are many critical molecular features buried 
within an API and a coformer that cannot be mined through molecular descriptors.  Such a framework 
would provide a unique opportunity to explore the most inherently reliable features in an API and a 
coformer that would likely lead to predictable cocrystallization outcomes.  

This study compares the performance of two machine learning models to predict the formation of binary 
cocrystals of an array of APIs and coformers possessing diverse hydrogen bond functional groups and 
molecular properties using a binary logistic regression model and a random forest model.  The former 
model is inherently more simplistic, and it is therefore hypothesized that the random forest model would 
be more fitting to predict cocrystal outcomes considering the robustness of input variables in the training 
dataset.  The performance of machine learning models is also dependent on the number and types of 
molecular properties and the size of the dataset.   

Based on the hypotheses proposed above, the current study has two main objectives to achieve.  First, it 
seeks to determine which molecular properties in APIs and coformers tend to influence cocrystal formation 
more than others.  It also aims to determine and compare the predictive accuracies of both machine learning 
models and see the extent to which further optimization is needed.   

Methods 

BCS Class II APIs were chosen for this study due to their low solubility and high permeability.  The 
coformers were selected based on their potential to hydrogen-bond with the APIs through the common 
supramolecular synthons illustrated in Figure 2.  From the CCSD, there were several experimental crystal 
structures that contained these API-coformer combinations which resulted in either a ‘cocrystal’ or ‘no 
cocrystal’, which were subsequently entered into a ‘Master Sheet’ and used to train the dataset.  The 
molecular properties of each API and coformer molecule were obtained through the use of several software 
tools, compiled, and organized into a ‘Master Sheet’, which served as the training dataset with an initial 
cohort of 542 observations, Figure 3 (also see Supplementary Information). 
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Figure 3.  Workflow of methodology used to construct the machine learning 

models. 

 

We employed Python’s machine learning library - scikit learn (version 0.24.1) to develop a binary logistic 
regression classifier, and a random forest classifier 
(https://github.com/paulmorganjr/urbina_morgan_cocrystals). To construct our machine learning 
models, our dataset contained a total of 31 variables corresponding to several molecular properties of both 
the API and coformer. The binary logistic regression classification is a statistical model that uses one or 
more predictor variables that may be categorical or continuous to predict a target variable class, i.e. 
cocrystal formation or no cocrystal formation (Estiri et al., 2021).  Alternatively, the random forest model 
is comprised of a host of decision trees that are based on several true or false conditions using the input 
data (Heo et al., 2019).  The final classification is based on the sum of decisions made by the decision tree. 
Both models were fine-tuned with the most optimal parameters to ensure that the validation dataset would 
not be over fitted (Pfaff et al., 2022). 

Python version 3.10.6 was used for statistical analyses (Patel et al., 2020).  The receiver operating 
characteristic curve (ROC) analysis and the area under the curve (AUC) were calculated using an in-house 
python script to compare the efficacy of each model.  All P values were 2-sided with a significance threshold 
value of <0.05 (Heo et al., 2019). 

Results 

Figure 4 compares the feature importance for the (A) binary logistic regression and (B) random forest 
models whereby the scores of all the molecular properties for both APIs and coformers were factored into 
each model.  These scores are useful because they play a critical role in deciphering how useful a variable is 
in predicting an outcome.  While most properties tend to influence cocrystal formation at varying degrees 
in each model, it seems that the most basic pKa of an API is one of the most important properties, given its 
highest score, regardless of the type of model used.  
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Figure 4. A. Binary logistic regression feature importance. B. Random Forest feature importance. Feature 
importance refers to scores that are assigned to molecular properties of both the API and coformer from 
the input dataset.  

The receiver operating characteristic (ROC) curve and the confusion matrix for each model were also 
generated, Figure 5(A)-(D).  While the area under the ROC (AUROC) curve was greater than 0.500 in each 
model, the AUROC value was greater (0.901) and the curve was steeper for the ROC plot in the random 
forest model compared to that in the binary logistic regression model (0.811), meaning that the rate of true 
positive cocrystal formation outcomes is greater than the rate of false positive outcomes.  This observation 
agrees with the confusion matrix results because there is a greater number of predicted true positive (54) 
and true negative (79) cocrystal outcomes in the random forest model that coincided with the number of 
experimental cocrystal outcomes obtained from the CCSD in the training set compared to those in the 
binary logistic regression model (34 true positive and 45 true negative outcomes).  At the same time, the 
number of predicted false positive (19 versus 17) and false negative (11 versus 13) cocrystal outcomes was 
comparable between the binary logistic regression and random forest models respectively.    



Section I – Health, Natural Sciences, and Technology 

Journal of Belizean Research, Volume 1 – Issue 1, University of Belize, September 2022 7 

 

Figure 5. A. Receiver operating characteristic curve (ROC) 

 

Figure 5. A. Receiver operating characteristic curve (ROC) for the binary logistic regression model with an 
area under the curve of 0.811. B. The confusion matrix performance metrics calculated from predictions of 
the binary logistic regression model on the test dataset. C. ROC for the random forest model with an area 
under the curve of 0.901. D. The confusion matrix performance metrics calculated from predictions of the 
random forest model on the test dataset.  

Discussion 

A comparison of the feature importance between the two models revealed that the basic pKa1 of an API 
seems to be one of the most important properties towards cocrystal formation, which relates to the first 
hypothesis.  This is in line with previous work conducted by our research group on cocrystal predictions of 
azole APIs and mono- and dicarboxylic acids (Herrera, 2021), as well as with one of the Etter rules which 
states that the strongest hydrogen bond donor will interact with the strongest hydrogen bond acceptor, the 
second strongest donor with the second strongest acceptor, etc. in a hierarchical fashion until all sites have 
been satisfied (Etter, 1991).  Ever since this concept has been postulated by Etter, a significant body of 
publications have supported it for the purposes of academic and pharmaceutical cocrystal research.   At this 
time, it may be speculated that the choice of API needs to involve a careful consideration of the strongest 
acceptor site on the heterocyclic API such that a cocrystal is formed and not a salt.  However, further 
computational and experimental validation research is required in order to better understand the degree of 
importance of the basic pKa1 of an API in cocrystal prediction when the dataset is expanded with additional 
features such as hydrogen bond propensity, lattice energy, Gibbs free energy, inter alia, as well as with a 
greater diversity of BCS Class II APIs and coformers.   It will also be important to note whether there will 
be any significant inherent molecular properties in a coformer that need to be considered in cocrystal design 
after these further studies are conducted. 
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It was expected that the random forest model would out-perform the binary logistic regression model 
(AUROC 0.811 vs 0.901 respectively) as per our second hypothesis, since the former involved more robust 
input variables in the training dataset compared to the latter, suggesting that it was better fit as a predictor 
of cocrystal outcomes.  Our work also implies that the use of machine learning models can accurately predict 
the cocrystallization outcome of an API. The ability to both be a predictor and identify relevant features 
makes the binary logistic regression and random forest models ideal in elucidating key molecular 
descriptors for cocrystal formation (Pfaff et al., 2022). 

There are several limitations in this study. First, although a robust array of 31 molecular properties were 
considered in our machine learning models, there are still other features like hydrogen bond propensity, 
that are experimentally influential, which we did not consider.  Integrating more experimental parameters 
from the CCSD is likely to improve the outcomes of predictions and validation but is also likely to change 
the weightings of feature importance.  As to the magnitude of influence on feature importance, this is 
currently unknown, and is a priority in our future work. Second, the size of our dataset is relatively small 
with a total of 542 observations. We hope to robustly expand this dataset in an effort to increase the 
diversity.  This expansion should improve our models and increase the accuracy of our experimentally 
predicted outcomes.  Finally, we have only explored two machine learning models to classify 
cocrystallization prediction outcomes.   A neural network based deep learning model is likely to out-perform 
the conventional machine learning models we have employed in this study.  Within this scope of work, it is 
also important to systematically test the dataset using models of varying complexity in order to more 
accurately establish which intrinsic molecular features consistently play a salient role in predicting cocrystal 
formation.  From these future studies, we intend to generate a list of predicted cocrystal outcomes involving 
new API-coformer combinations that are not part of the training dataset and validate these predictions 
against the experimental cocrystal screening results of these combinations.  

Conclusion 

We developed two machine learning algorithms that can accurately predict API cocrystal formation based 
on the molecular properties of an API and a coformer. The random forest model out-performed the binary 
logistic model with AUROC values of 0.901 and 0.811 respectively. Both models were also mined for 
molecular features that can provide further insight into molecular properties that seem critical to API 
cocrystallization. Of the 31 molecular properties that were explored, the basic pKa1 of an API appears to be 
a heavily weighted feature. We plan to explore the feature importance of key molecular properties that are 
critical to cocrystallization in a sequel study, as well as to validate our in silico predictions with experimental 
data through cocrystal screening studies. 
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PubChem and Drugbank 
 
The freely accessible chemical information online database PubChem was used to download the 
3D ‘.sdf’ file of APIs and coformers for the determination of computational values for each 
molecule. The online Drug database Drugbank was used to obtain a general definition of each 
API and a brief context on its general usage. Drugbank also provided the melting point for all APIs  
while PubChem provided the coformer melting points.  APIs and coformers that rendered no 
experimental melting points were given a value of zero. 

Determination of pKa Values 

The pKa values of hydrogen-bond donor and acceptor groups in APIs and coformers were 
determined using the database available in the Chemicalize pKa calculator from ChemAxon.  In 
instances where a specific coformer structure was not accessible, the software’s tools were 
utilized to build a 2D representation of the structure and searched in that format against its 
database.  Solubility values (mg/mL) of each component were also determined using the 
Chemicalize pKa calculator and tabulated. The differences in pKa (ΔpKa) between the pKa values 
of the APIs and coformers were calculated using Equation 1.  This same procedure was repeated 
for the API’s second most acid pKa  and the second most basic pKa of coformers.  

   
 

  ΔpKa = [API pKa]most acidic - [Coformer pKa]most basic    Equation 1 
   
   

Determination of Computational Values 
 
Wavefunction’s Spartan 14.V1.1.4 molecular modeling and computational chemistry software 
contains codes for molecular mechanics, semi-empirical methods, ab initio, models, density 
functional models, and post-Hartree-Fock models. Based on past in silico studies, Density 
Functional Theory was used as a primary code to calculate Energy. The structures generated from 
PubChem were used as structural input for the calculations to be made.  Due to the lack of specific 
mention in literature, Energy was chosen as the main parameter to render the calculations. A 
basis set of EDF2/6-31G* at a ground state specie in a vacuum setting was chosen to calculate 
the Highest Occupied Molecular Orbital (HOMO) energy values, Lowest Unoccupied Molecular 
Orbital (LUMO) energy values, dipole energy, and energy associated with water (Eaq). In cases 
where the coformer contained ionic charges, the total charge was determined by summing up all 
the individual charges present. In such cases, the total charge was changed from neutral and 



replaced by the appropriate overall charge value along with the unpaired electrons if any were 
present.  In cases where the cocrystal component already existed in the Spartan Molecular 
Database (SMD) and had available properties, no computational calculations were performed.  
All the properties collected for each API were appended using the “append molecule(s)” option 
within Spartan and then exported as a spreadsheet. The same step was followed for the 
properties of each coformer. For components that had no available 3D structure, the Spartan 
automatic conversion feature was used to translate the 2D structure into their 3D renditions. 
Other structures that had no 3D or 2D file had to be manually drawn using the Spartan 2D drawing 
kit and the software then allowed to transform them into their 3D representations.  The 
arrangement of the columns in the spreadsheet all depended on the researcher's preference. 

Determination of API and Coformer Drug-Like Properties 
Drug-likeness rules are a set of guidelines for the structural properties of compounds and used 
for fast calculations of drug-like properties of a molecule. The guidelines are not absolute, nor 
are they intended to form strict cutoff values for which property values are drug-like and which 
are not drug-like. Nevertheless, they are quite effective and efficient.  DrugLiTo is an open-source 
virtual screening tool, and its calculations are based on various drug-likeness rules like Lipinski’s 
rule. The drug-like properties of each API and coformer were calculated using this tool, and 
copied and pasted on the same spreadsheet used to export the properties calculated from 
Spartan. Each worksheet was labeled according to the property they hold, i.e. API properties and 
coformer properties.  

Formatting of Molecular Properties and Preparing the Master Sheet 
The molecular properties of APIs and coformers were compiled into a ‘Master Sheet’ (see 
Supplementary Information) which was then used to train the binary logistic regression and 
random forest models.  Properties that repeated themselves were eliminated to avoid repetition. 
Once all the properties of each component matched with each other (i.e the same properties 
were considered for both API and coformer), the master sheet was compiled.  This was 
accomplished by making reference to an ‘Experimental Formulation’ sheet, which contained API-
coformer combinations found in the CCSD software using the free online version.1  For example, 
if acyclovir formed a cocrystal with aspirin, both components were located inside each of their 
respective worksheets and placed next to each other on the new worksheet labeled as ‘Master 
Sheet’.  In the end, two columns were created, one labeled as ‘Formation’ and the other as ‘Binary 
Formation’. Depending on the structural outcome, each combination was labeled as either CC 
(cocrystal), S (salt), So (solvate), Ca (Clathrate), or H (Hydrate) and a 1 if CC was assigned or a 0 if 
it was any designation other than CC. Final Column titles were formatted so that the entire sheet 
can be in an acceptable format for developing the models. 
 
 
 
 
 



2. Results 

  

Table 1. Shows 31 molecular features and their importance weighting for the binary logistic regression model and the 

random forest model that comprise our dataset. 

  Feature Importance 

Features (Molecular 

Properties) Binary Logistic Regression Random Forest 

MW_API -0.34496969 0.02011641 

LogP_API 0.09257833 0.01782247 

AlogP_API -0.42462263 0.0245608 

HBA_API -0.20132495 0.00886859 

HBD_API -0.62442268 0.01134749 

TPSA_API 0.54034361 0.00991255 

AMR_API -0.41851244 0.01955798 

nRB_API 0.26624186 0.0100314 

nAtom_API 0.04168245 0.04197165 



nAcidicGroup_API -0.16019191 0.00189427 

RC_API 0.79381706 0.02001658 

nRigidB_API -0.68929588 0.0130757 

nAromaticRings_API 0.58107963 0.00847413 

nHB_API -0.34935948 0.00908816 

E_API -0.55223561 0.01499251 

Eaq_API 0.37131394 0.01846656 

relE_API 0 0 

relEaq_API 0 0 

EHOMO_API -0.30262597 0.04325314 

ELUMO_API 0.08710924 0.01757253 

Dipole_API 0.08449122 0.0153998 

SolvationE_API -0.18724896 0.02257039 

Solubility_API 0.16372218 0.01328888 



Acidicpka1_API 0.05357868 0.01089692 

Acidicpka2_API 0.20130881 0.00195928 

Acidicpka3_API 0.16220816 0.00014866 

Acidicpka4_API -0.05847491 0 

Basicpka1_API -1.44097491 0.07664851 

Basicpka2_API -0.00179647 0.01138154 

Basicpka3_API 0.64020799 0.00059525 

Basicpka4_API 0.05847491 0 

MeltingP_API -0.1661764 0.03576395 

MW_Co 0.21619311 0.02943753 

LogP_Co -0.2720467 0.01732715 

AlogP_Co 0.21643399 0.01971686 

HBA_Co -0.46028155 0.00769478 

HBD_Co 0.06810168 0.02878199 



TPSA_Co 0.06767133 0.02998355 

AMR_Co 0.16483552 0.00787716 

nRB_Co -0.56388985 0.02309109 

nAtom_Co 0.9255284 0.00763587 

nAcidicGroup_Co 0.96255367 0.00635825 

RC_Co 0.05686386 0.02258121 

nRigidB_Co 0.34150863 0.00813558 

nAromaticRing_Co -0.05113562 0.01791981 

nHB_Co 0.59733783 0.0355671 

E_Co -0.54851207 0.03114957 

Eaq_Co 0 0 

relE_Co 0 0 

relEaq_Co 0.57216983 0.0319403 

EHOMO_Co -0.54257769 0.03173921 



ELUMO_Co -0.65825084 0.02301752 

Dipole_Co 0.38246829 0.02932621 

SolvationE_Co 0.08760538 0.02091158 

Solubility_Co 0.81233268 0.02091158 

Acidicpka1_Co 0.13818505 0.01383913 

Acidicpka2_Co -0.05359446 0.00117207 

Acidicpka3_Co 0.05564166 0.00065581 

Acidicpka4_Co -0.26959601 0.01062214 

Basicpka1_Co -0.01439614 0.00906533 

Basicpka2_Co 0.06959204 0.00041044 

Basicpka3_Co 0 0 

Basicpka4_Co 0 0 
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